کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | ترجمه فارسی | نسخه تمام متن |
---|---|---|---|---|---|
4966139 | 1448764 | 2017 | 12 صفحه PDF | سفارش دهید | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Convergence analysis of Laplacian-based gradient elasticity in an isogeometric framework
ترجمه فارسی عنوان
تجزیه و تحلیل همگرایی کشش شیب مبتنی بر لاپلازی در یک چارچوب ایزوگومتریک
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
A convergence study is presented for a form of gradient elasticity where the enrichment is through the Laplacian of the strain, so that a fourth-order partial differential equation results. Isogeometric finite element analysis is used to accommodate the higher continuity required by the inclusion of strain gradients. A convergence analysis is carried out for the original system of a fourth-order partial differential equation. Both global refinement, using NURBS, and local refinement, using T-splines, have been applied. Theoretical convergence rates are recovered, except for a polynomial order of two, when the convergence rate is suboptimal, a result which also has been found for the (fourth-order) Cahn-Hilliard equation. The convergence analyses have been repeated for the case that an operator split is applied so that a set of two (one-way) coupled partial differential equations results. Differences occur with the results obtained for the original fourth-order equation, which is caused by the boundary conditions, which is the first time this effect has been substantiated.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Finite Elements in Analysis and Design - Volume 135, 1 November 2017, Pages 56-67
Journal: Finite Elements in Analysis and Design - Volume 135, 1 November 2017, Pages 56-67
نویسندگان
Isa Kolo, Harm Askes, René de Borst,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت