کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4967126 | 1449362 | 2017 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Basis adaptation and domain decomposition for steady-state partial differential equations with random coefficients
ترجمه فارسی عنوان
سازگاری پایه و تجزیه دامنه برای معادلات دیفرانسیل با ماتریس ثابت با ضرایب تصادفی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
سازگاری پایه، کاهش ابعاد، تجزیه دامنه، هرج و مرج چندجملهای، عدم قطعیت اندازه گیری،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
We present a novel approach for solving steady-state stochastic partial differential equations in high-dimensional random parameter space. The proposed approach combines spatial domain decomposition with basis adaptation for each subdomain. The basis adaptation is used to address the curse of dimensionality by constructing an accurate low-dimensional representation of the stochastic PDE solution (probability density function and/or its leading statistical moments) in each subdomain. Restricting the basis adaptation to a specific subdomain affords finding a locally accurate solution. Then, the solutions from all of the subdomains are stitched together to provide a global solution. We support our construction with numerical experiments for a steady-state diffusion equation with a random spatially dependent coefficient. Our results show that accurate global solutions can be obtained with significantly reduced computational costs.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 351, 15 December 2017, Pages 203-215
Journal: Journal of Computational Physics - Volume 351, 15 December 2017, Pages 203-215
نویسندگان
R. Tipireddy, P. Stinis, A.M. Tartakovsky,