کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4967704 | 1449380 | 2017 | 5 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On the eigenvalues of the ADER-WENO Galerkin predictor
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
ADER-WENO methods represent an effective set of techniques for solving hyperbolic systems of PDEs. These systems may be non-conservative and non-homogeneous, and contain stiff source terms. The methods require a spatio-temporal reconstruction of the data in each spacetime cell, at each time step. This reconstruction is obtained as the root of a nonlinear system, resulting from the use of a Galerkin method. It is proved here that the eigenvalues of certain matrices appearing in these nonlinear systems are always 0, regardless of the number of spatial dimensions of the PDEs, or the chosen order of accuracy of the ADER-WENO method. This guarantees fast convergence to the Galerkin root for certain classes of PDEs.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 333, 15 March 2017, Pages 409-413
Journal: Journal of Computational Physics - Volume 333, 15 March 2017, Pages 409-413
نویسندگان
Haran Jackson,