کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
496842 862872 2009 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The development of a sub-population genetic algorithm II (SPGA II) for multi-objective combinatorial problems
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
The development of a sub-population genetic algorithm II (SPGA II) for multi-objective combinatorial problems
چکیده انگلیسی

Previous research has shown that sub-population genetic algorithm is effective in solving the multi-objective combinatorial problems. Based on these pioneering efforts, this paper extends the SPGA algorithm with a global Pareto archive technique and a two-stage approach to solve the multi-objective problems. In the first stage, the areas next to the two single objectives are searched and solutions explored around these two extreme areas are reserved in the global archive for later evolutions. Then, in the second stage, larger searching areas except the middle area are further extended to explore the solution space in finding the near-optimal frontiers. Through extensive experimental results, SPGA II does outperform SPGA, NSGA II, and SPEA 2 in the parallel scheduling problems and knapsack problems; it shows that the approach improves the sub-population genetic algorithm significantly. It may be of interests for researchers in solving multi-objective combinatorial problems.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Soft Computing - Volume 9, Issue 1, January 2009, Pages 173–181
نویسندگان
, ,