کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4968747 | 1449750 | 2016 | 41 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Online multi-object tracking by detection based on generative appearance models
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper presents a robust online multiple object tracking (MOT) approach based on multiple features. Our approach is able to handle MOT problems, like long-term and heavy occlusions and close similarity between target appearance models. The proposed MOT algorithm is based on the concept of multi-feature fusion. It selects the best position of the tracked target by using a robust appearance model representation. The appearance model of a target is built with a color model, a sparse appearance model, a motion model and a spatial information model. In order to select the optimal candidate (detection response) of the target, we calculate a linear affinity function that integrates similarity scores coming from each feature. In our MOT system, we formulate the problem as a data association problem between a set of detections and a set of targets according to their joint probability values. The proposed method has been evaluated on public video sequences. Compared with the state-of-the-art, we demonstrate that our MOT framework achieves competitive results and is capable of handling several challenging problems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Vision and Image Understanding - Volume 152, November 2016, Pages 88-102
Journal: Computer Vision and Image Understanding - Volume 152, November 2016, Pages 88-102
نویسندگان
Dorra Riahi, Guillaume-Alexandre Bilodeau,