کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4968821 1449748 2017 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Unsupervised object region proposals for RGB-D indoor scenes
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Unsupervised object region proposals for RGB-D indoor scenes
چکیده انگلیسی
In this paper, we present a novel unsupervised framework for automatically generating bottom up class independent object candidates for detection and recognition in cluttered indoor environments. Utilizing raw depth map from active sensors such as Kinect, we propose a novel plane segmentation algorithm for dividing an indoor scene into predominant planar regions and non-planar regions. Based on this partition, we are able to effectively predict object locations and their spatial extensions. Our approach automatically generates object proposals considering five different aspects: Non-planar Regions (NPR), Planar Regions (PR), Detected Planes (DP), Merged Detected Planes (MDP) and Hierarchical Clustering (HC) of 3D point clouds. Object region proposals include both bounding boxes and instance segments. Our approach achieves very competitive results and is even able to outperform supervised state-of-the-art algorithms on the challenging NYU-v2 RGB-Depth dataset. In addition, we apply our approach to the most recently released large scale RGB-Depth dataset from Princeton University - “SUN RGBD”, which utilizes four different depth sensors. Its consistent performance demonstrates a general applicability of our approach.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Vision and Image Understanding - Volume 154, January 2017, Pages 127-136
نویسندگان
, , ,