کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4968859 | 1449746 | 2017 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Online supervised hashing
ترجمه فارسی عنوان
هشینگ تحت نظارت آنلاین
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
هش جستجوی شبیه سازی سریع نزدیکی نزدیکترین همسایگان، بازیابی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
Fast nearest neighbor search is becoming more and more crucial given the advent of large-scale data in many computer vision applications. Hashing approaches provide both fast search mechanisms and compact index structures to address this critical need. In image retrieval problems where labeled training data is available, supervised hashing methods prevail over unsupervised methods. Most state-of-the-art supervised hashing approaches employ batch-learners. Unfortunately, batch-learning strategies may be inefficient when confronted with large datasets. Moreover, with batch-learners, it is unclear how to adapt the hash functions as the dataset continues to grow and new variations appear over time. To handle these issues, we propose OSH: an Online Supervised Hashing technique that is based on Error Correcting Output Codes. We consider a stochastic setting where the data arrives sequentially and our method learns and adapts its hashing functions in a discriminative manner. Our method makes no assumption about the number of possible class labels, and accommodates new classes as they are presented in the incoming data stream. In experiments with three image retrieval benchmarks, our method yields state-of-the-art retrieval performance as measured in Mean Average Precision, while also being orders-of-magnitude faster than competing batch methods for supervised hashing. Also, our method significantly outperforms recently introduced online hashing solutions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Vision and Image Understanding - Volume 156, March 2017, Pages 162-173
Journal: Computer Vision and Image Understanding - Volume 156, March 2017, Pages 162-173
نویسندگان
Fatih Cakir, Sarah Adel Bargal, Stan Sclaroff,