کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4969042 | 1449848 | 2017 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A novel iris weight map method for less constrained iris recognition based on bit stability and discriminability
ترجمه فارسی عنوان
یک روش نقشه وزن عنبی جدید برای شناسایی عنبیه با محدودیت کمتر با توجه به ثبات بیت و تبعیض پذیری
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تشخیص بادکنک، محیط محدود کمتر نقشه وزن یخچال،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
In this paper, we propose and investigate a novel iris weight map method for iris matching stage to improve less constrained iris recognition. The proposed iris weight map considers both intra-class bit stability and inter-class bit discriminability of iris codes. We model the intra-class bit stability in a stability map to improve the intra-class matching. The stability map assigns more weight to the bits that have values more consistent with their noiseless and stable estimates obtained using a low rank approximation from a set of noisy training images. Also, we express the inter-class bit discriminability in a discriminability map to enhance the inter-class separation. We calculate the discriminability map using a 1-to-N strategy, emphasizing the bits with more discriminative power in iris codes. The final iris weight map is the combination of the stability map and the discriminability map. We conduct experimental analysis on four publicly available datasets captured in varying less constrained conditions. The experimental results demonstrate that the proposed iris weight map achieves generally improved identification and verification performance compared to state-of-the-art methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Image and Vision Computing - Volume 58, February 2017, Pages 168-180
Journal: Image and Vision Computing - Volume 58, February 2017, Pages 168-180
نویسندگان
Yang Hu, Konstantinos Sirlantzis, Gareth Howells,