کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4969771 | 1449980 | 2017 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A new maximum relevance-minimum multicollinearity (MRmMC) method for feature selection and ranking
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A substantial amount of datasets stored for various applications are often high dimensional with redundant and irrelevant features. Processing and analysing data under such circumstances is time consuming and makes it difficult to obtain efficient predictive models. There is a strong need to carry out analyses for high dimensional data in some lower dimensions, and one approach to achieve this is through feature selection. This paper presents a new relevancy-redundancy approach, called the maximum relevance-minimum multicollinearity (MRmMC) method, for feature selection and ranking, which can overcome some shortcomings of existing criteria. In the proposed method, relevant features are measured by correlation characteristics based on conditional variance while redundancy elimination is achieved according to multiple correlation assessment using an orthogonal projection scheme. A series of experiments were conducted on eight datasets from the UCI Machine Learning Repository and results show that the proposed method performed reasonably well for feature subset selection.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 67, July 2017, Pages 47-61
Journal: Pattern Recognition - Volume 67, July 2017, Pages 47-61
نویسندگان
Azlyna Senawi, Hua-Liang Wei, Stephen A. Billings,