کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4970281 | 1450032 | 2017 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Image representation and matching with geometric-edge random structure graph
ترجمه فارسی عنوان
نمایش تصویر و تطبیق با نمودار ساختار تصادفی هندسی-لبه
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
نمایندگی تصویر، مدل های نمودار، نمودار تصادفی تصویر تطابق،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
Structure graphs are often used in image structural representation by organizing the units of image (such as feature points). However, due to “noise” or non-rigid deformations, the graphs generated from images are usually not stable. To overcome this problem, image matching and recognition can usually be achieved by inexact graph matching means. There has been recent much work on inexact graph matching, but not much on robust graph modeling itself. In this paper we develop a new robust structure graph model for image representation and matching. We believe that a robust structure graph model should adapt to the noise or perturbation of the image units. Here, we explore random graphs instead of traditional graph models and propose a novel random structure graph, called Geometric-Edge random graphs (G-E graphs), for image representation and matching. The main idea of G-E graphs is that the probabilities of edges between node pairs are explored to indicate the uncertainty or variations of edges in the geometric graph generated under some noise or perturbation of the image units. Promising experimental results on both image matching and pattern space embedding show that the proposed G-E graphs are effective and robust to structural variations and significantly outperform traditional graph models.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 87, 1 February 2017, Pages 20-28
Journal: Pattern Recognition Letters - Volume 87, 1 February 2017, Pages 20-28
نویسندگان
Jiang Bo, Tang Jin, Zheng Aihua, Luo Bin,