کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4970377 | 1450123 | 2017 | 31 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A statistical analysis of the kernel-based MMSE estimator with application to image reconstruction
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper we carry out a statistical analysis of a multivariate minimum mean square error (MMSE) estimator developed from a nonparametric kernel-based probability density function. This kernel-based MMSE (KMMSE) estimation has been recently proposed by the authors and successfully applied to image and video reconstruction. The statistical analysis that we present here allows us to understand the utility and limitations of this estimator. Thus, we propose a couple of estimation error measures intended for locally linear signals and show how KMMSE can approximate a sparse estimator. Also, we study how the estimation error propagates when signals are reconstructed recursively, that is, when already-reconstructed samples are used for estimating new samples. As an application, we focus on the problem of the filling ordering (FO) associated to the reconstruction of heterogeneous image blocks. Thus, borrowing the concept of soft data from missing data theory, the error measures established in the first part of the paper can be transformed into reliability measures from which a novel FO procedure is developed. We show that the proposed FO outperforms other state-of-the-art procedures.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing: Image Communication - Volume 55, July 2017, Pages 41-54
Journal: Signal Processing: Image Communication - Volume 55, July 2017, Pages 41-54
نویسندگان
Antonio M. Peinado, Ján Koloda, Angel M. Gomez, Victoria Sanchez,