کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4970414 1450120 2017 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Global sparse gradient guided variational Retinex model for image enhancement
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Global sparse gradient guided variational Retinex model for image enhancement
چکیده انگلیسی
In this paper, we propose a global sparse gradient guided variational Retinex model (GSG-VR) for image enhancement. Based on the Retinex theory, a new variational Retinex model is proposed to decompose an image into illumination layer and reflectance layer. The gradient of illumination layer is expected to approximate a guided gradient field which is estimated by a global sparse gradient model (GSG). To estimate the guided gradient at each pixel, GSG makes use of pixels within its neighborhood (even global image). And a sparse regularization is imposed on the whole gradient field. These two models, the new variational Retinex and GSG model, compose a complete system GSG-VR. To solve it, a proximal forward-backward splitting algorithm and an alternating minimization algorithm are developed. A few numerical examples are presented to illustrate the effectiveness of the proposed models and algorithms.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing: Image Communication - Volume 58, October 2017, Pages 270-281
نویسندگان
, , , , ,