کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4970499 1450126 2017 30 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Predictive no-reference assessment of video quality
ترجمه فارسی عنوان
ارزیابی پیش بینی بدون مرجع کیفیت ویدیو
کلمات کلیدی
کیفیت تجربه، ارزیابی کیفیت ویدئو بدون مرجع، نظارت بر یادگیری ماشین،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
Among the various means to evaluate the quality of video streams, light-weight No-Reference (NR) methods have low computation and may be executed on thin clients. Thus, these methods would be perfect candidates in cases of real-time quality assessment, automated quality control and in adaptive mobile streaming. Yet, existing real-time, NR approaches are not typically designed to tackle network distorted streams, thus performing poorly when compared to Full-Reference (FR) algorithms. In this work, we present a generic NR method whereby machine learning (ML) may be used to construct a quality metric trained on simplistic NR metrics. Testing our method on nine, representative ML algorithms allows us to show the generality of our approach, whilst finding the best-performing algorithms. We use an extensive video dataset (960 video samples), generated under a variety of lossy network conditions, thus verifying that our NR metric remains accurate under realistic streaming scenarios. In this way, we achieve a quality index that is comparably as computationally efficient as typical NR metrics and as accurate as the FR algorithm Video Quality Metric (97% correlation).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing: Image Communication - Volume 52, March 2017, Pages 20-32
نویسندگان
, , , ,