کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4970499 | 1450126 | 2017 | 30 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Predictive no-reference assessment of video quality
ترجمه فارسی عنوان
ارزیابی پیش بینی بدون مرجع کیفیت ویدیو
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
کیفیت تجربه، ارزیابی کیفیت ویدئو بدون مرجع، نظارت بر یادگیری ماشین،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
Among the various means to evaluate the quality of video streams, light-weight No-Reference (NR) methods have low computation and may be executed on thin clients. Thus, these methods would be perfect candidates in cases of real-time quality assessment, automated quality control and in adaptive mobile streaming. Yet, existing real-time, NR approaches are not typically designed to tackle network distorted streams, thus performing poorly when compared to Full-Reference (FR) algorithms. In this work, we present a generic NR method whereby machine learning (ML) may be used to construct a quality metric trained on simplistic NR metrics. Testing our method on nine, representative ML algorithms allows us to show the generality of our approach, whilst finding the best-performing algorithms. We use an extensive video dataset (960 video samples), generated under a variety of lossy network conditions, thus verifying that our NR metric remains accurate under realistic streaming scenarios. In this way, we achieve a quality index that is comparably as computationally efficient as typical NR metrics and as accurate as the FR algorithm Video Quality Metric (97% correlation).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing: Image Communication - Volume 52, March 2017, Pages 20-32
Journal: Signal Processing: Image Communication - Volume 52, March 2017, Pages 20-32
نویسندگان
Maria Torres Vega, Decebal Constantin Mocanu, Stavros Stavrou, Antonio Liotta,