| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
|---|---|---|---|---|
| 4972382 | 1451043 | 2017 | 39 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Early detection of university students with potential difficulties
ترجمه فارسی عنوان
تشخیص زودهنگام دانشجویان دانشگاه با مشکلات بالقوه
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
سایش دانشجویی، فراگیری ماشین، پیش بینی، طبقه بندی، دقت، بهبود
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
سیستم های اطلاعاتی
چکیده انگلیسی
Using data mining methods, this paper presents a new means of identifying freshmen's profiles likely to face major difficulties to complete their first academic year. Academic failure is a relevant issue at a time when post-secondary education is ever more critical to economic success. We aim at early detection of potential failure using student data available at registration, i.e. school records and environmental factors, with a view to timely and efficient remediation and/or study reorientation. We adapt three data mining methods, namely random forest, logistic regression and artificial neural network algorithms. We design algorithms to increase the accuracy of the prediction when some classes are of major interest. These algorithms are context independent and can be used in different fields. Real data pertaining to undergraduates at the University of Liège (Belgium), illustrates our methodology.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Decision Support Systems - Volume 101, September 2017, Pages 1-11
Journal: Decision Support Systems - Volume 101, September 2017, Pages 1-11
نویسندگان
Anne-Sophie Hoffait, Michaël Schyns,
