کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4973783 | 1451709 | 2017 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Automatic modulation classification of digital modulation signals with stacked autoencoders
ترجمه فارسی عنوان
طبقه بندی مدولاسیون اتوماتیک سیگنال های مدولاسیون دیجیتال با دستگاه های خودکار انباشته شده
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
چکیده انگلیسی
Modulation identification of the transmitted signals remain a challenging area in modern intelligent communication systems like cognitive radios. The computation of the distinct features from input data set and applying machine learning algorithms has been a well-known method in the classification of such signals. However, recently, deep neural networks, a branch of machine learning, have gained significant attention in the pattern recognition of complex data due to its superior performance. Here, we test the application of deep neural networks to the automatic modulation classification in AWGN and flat-fading channel. Three training inputs were used; mainly 1) In-phase and quadrature (I-Q) constellation points, 2) the centroids of constellation points employing the fuzzy C-means algorithm to I-Q diagrams, and 3) the high-order cumulants of received samples. The unsupervised learning from these data sets was done using the sparse autoencoders and a supervised softmax classifier was employed for the classification. The designing parameters for training single and 2-layer sparse autoencoders are proposed and their performance compared with each other. The results show that a very good classification rate is achieved at a low SNR of 0 dB. This shows the potential of the deep learning model for the application of modulation classification.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Digital Signal Processing - Volume 71, December 2017, Pages 108-116
Journal: Digital Signal Processing - Volume 71, December 2017, Pages 108-116
نویسندگان
Afan Ali, Fan Yangyu, Shu Liu,