کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4973943 1451720 2017 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fast Bayesian blind deconvolution with Huber Super Gaussian priors
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
پیش نمایش صفحه اول مقاله
Fast Bayesian blind deconvolution with Huber Super Gaussian priors
چکیده انگلیسی
Expectation Maximization (EM) based inference has already proven to be a very powerful tool to solve blind image deconvolution (BID) problems. Unfortunately, three important problems still impede the application of EM in BID: the undesirable saddle points and local minima caused by highly nonconvex priors, the instability around zero of some of the most interesting sparsity promoting priors, and the intrinsic high computational cost of the corresponding BID algorithm. In this paper we first show how Super Gaussian priors can be made numerically tractable around zero by introducing the family of Huber Super Gaussian priors and then present a fast EM based blind deconvolution method formulated in the image space. In the proposed computational approach, image and kernel estimation are performed by using the Alternating Direction Method of Multipliers (ADMM), which allows to exploit the advantages of FFT computation. For highly nonconvex priors, we propose a Smooth ADMM (SADMM) approach to avoid poor BID estimates. Extensive experiments demonstrate that the proposed method significantly outperforms state-of-the-art BID methods in terms of quality of the reconstructions and speed.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Digital Signal Processing - Volume 60, January 2017, Pages 122-133
نویسندگان
, , , , ,