کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4973956 | 1451720 | 2017 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Enhanced knowledge-aided space-time adaptive processing exploiting inaccurate prior knowledge of the array manifold
ترجمه فارسی عنوان
پردازش انطباق پذیری فضایی با استفاده از دانش پیشرفته با بهره گیری از دانش پیشین نادرست از چندبعدی آرایه
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
فضا زمان پردازش تطبیقی، کمک به دانش، آرایه منیفولد، دانش پیشین نادرست، سرکوب خفگی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
چکیده انگلیسی
The accuracy of the prior knowledge of the clutter environments is critical to the clutter suppression performance of knowledge-aided space-time adaptive processing (KA-STAP) algorithms in airborne radar applications. In this paper, we propose an enhanced KA-STAP algorithm to estimate the clutter covariance matrix considering inaccurate prior knowledge of the array manifold for airborne radar systems. The core idea of this algorithm is to incorporate prior knowledge about the range of the measured platform velocity and the crab angle, and other radar parameters into the assumed clutter model to obtain increased robustness against inaccuracies of the data. It first over-samples the space-time subspace using prior knowledge about the range values of parameters and the inaccurate array manifold. By selecting the important clutter space-time steering vectors from the over-sampled candidates and computing the corresponding eigenvectors and eigenvalues of the assumed clutter model, we can obtain a more accurate clutter covariance matrix estimate than directly using the prior knowledge of the array manifold. Some extensions of the proposed algorithm with existing techniques are presented and a complexity analysis is conducted. Simulation results illustrate that the proposed algorithms can obtain good clutter suppression performance, even using just one snapshot, and outperform existing KA-STAP algorithms in presence of the errors in the prior knowledge of the array manifold.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Digital Signal Processing - Volume 60, January 2017, Pages 262-276
Journal: Digital Signal Processing - Volume 60, January 2017, Pages 262-276
نویسندگان
Zhaocheng Yang, Rodrigo C. de Lamare,