کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4974512 1365536 2017 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bias compensation principle based recursive least squares identification method for Hammerstein nonlinear systems
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
پیش نمایش صفحه اول مقاله
Bias compensation principle based recursive least squares identification method for Hammerstein nonlinear systems
چکیده انگلیسی
This paper presents a bias compensation principle based recursive least squares (BCP-RLS) identification method for Hammerstein nonlinear autoregressive moving average with exogenous variable (ARMAX) systems. By introducing a non-singular matrix and an auxiliary vector uncorrelated with the noise term, we firstly establish the BCP-RLS unified framework. Next the convergence and consistency properties of the achieved BCP-RLS method are rigorously analyzed without the martingale difference sequence assumption or the strictly positive real condition. Furthermore, some discussions on the flexibility of the BCP-RLS method and its comparisons with some other existing methods are presented. Finally, some representative simulation examples are conducted to verify the obtained results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Franklin Institute - Volume 354, Issue 3, February 2017, Pages 1340-1355
نویسندگان
, ,