کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4974512 | 1365536 | 2017 | 27 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Bias compensation principle based recursive least squares identification method for Hammerstein nonlinear systems
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper presents a bias compensation principle based recursive least squares (BCP-RLS) identification method for Hammerstein nonlinear autoregressive moving average with exogenous variable (ARMAX) systems. By introducing a non-singular matrix and an auxiliary vector uncorrelated with the noise term, we firstly establish the BCP-RLS unified framework. Next the convergence and consistency properties of the achieved BCP-RLS method are rigorously analyzed without the martingale difference sequence assumption or the strictly positive real condition. Furthermore, some discussions on the flexibility of the BCP-RLS method and its comparisons with some other existing methods are presented. Finally, some representative simulation examples are conducted to verify the obtained results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Franklin Institute - Volume 354, Issue 3, February 2017, Pages 1340-1355
Journal: Journal of the Franklin Institute - Volume 354, Issue 3, February 2017, Pages 1340-1355
نویسندگان
Bi Zhang, Zhizhong Mao,