کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
497767 862944 2016 30 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Sparse Variational Bayesian approximations for nonlinear inverse problems: Applications in nonlinear elastography
ترجمه فارسی عنوان
تقریبی بی نظیر متناهی بسنجی برای مشکلات معکوس غیر خطی: کاربرد در الستوگرافی غیر خطی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی

This paper presents an efficient Bayesian framework for solving nonlinear, high-dimensional model calibration problems. It is based on a Variational Bayesian formulation that aims at approximating the exact posterior by means of solving an optimization problem over an appropriately selected family of distributions. The goal is two-fold. Firstly, to find lower-dimensional representations of the unknown parameter vector that capture as much as possible of the associated posterior density, and secondly to enable the computation of the approximate posterior density with as few forward calls as possible. We discuss how these objectives can be achieved by using a fully Bayesian argumentation and employing the marginal likelihood or evidence as the ultimate model validation metric for any proposed dimensionality reduction. We demonstrate the performance of the proposed methodology for problems in nonlinear elastography where the identification of the mechanical properties of biological materials can inform non-invasive, medical diagnosis. An Importance Sampling scheme is finally employed in order to validate the results and assess the efficacy of the approximations provided.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 299, 1 February 2016, Pages 215–244
نویسندگان
, ,