کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4977916 1452105 2017 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A parallel two-level polynomial Jacobi-Davidson algorithm for large sparse PDE eigenvalue problems
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزار
پیش نمایش صفحه اول مقاله
A parallel two-level polynomial Jacobi-Davidson algorithm for large sparse PDE eigenvalue problems
چکیده انگلیسی
Many scientific and engineering applications require accurate, fast, robust, and scalable numerical solution of large sparse algebraic polynomial eigenvalue problems (PEVP's) that arise from some appropriate discretization of partial differential equations. The polynomial Jacobi-Davidson (PJD) algorithm has been numerically shown as a promising approach for the PEVP's to finding the interior spectrum. The PJD algorithm is a subspace method, which extracts the candidate eigenpair from a search space and the space updated by embedding the solution of the correction equation at the JD iteration. In this research, we develop and study the two-level PJD algorithm for PEVP's with emphasis on the application of the dissipative acoustic cubic eigenvalue problem. The proposed two-level PJD algorithm consists of two important ingredients: A good initial basis for the search space is constructed on the fine-level by using the interpolation of the coarse solution of the same eigenvalue problem in order to enhance the robustness of the algorithm. Also, an efficient and scalable two-level preconditioner based on the Schwarz framework is used for the correction equation. Some numerical examples obtained on a parallel cluster of computers are given in order to demonstrate the robustness and scalability of our PJD algorithm.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Engineering Software - Volume 112, October 2017, Pages 222-230
نویسندگان
, ,