کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4978172 | 1452256 | 2017 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Identification and characterization of information-networks in long-tail data collections
ترجمه فارسی عنوان
شناسایی و مشخص کردن شبکه های اطلاعاتی در مجموعه داده های طولانی مدت
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزار
چکیده انگلیسی
Scientists' ability to synthesize and reuse long-tail scientific data lags far behind their ability to collect and produce these data. Many Earth Science Cyberinfrastructures enable sharing and publishing their data over the web using metadata standards. While profiling data attributes advances the Linked Data approach, it has become clear that building information-networks among distributed data silos is essential to increase their integration and reusability. In this research, we developed a Long-Tail Information-Network (LTIN) model, which uses a metadata-driven approach to build semantic information-networks among datasets published over the web and aggregate them around environmental events. The model identifies and characterizes the spatial and temporal contextual association links and dependencies among datasets. This paper presents the design and application of the LTIN model, and an evaluation of its performance. The model capabilities were demonstrated by inferring the information-network of a stream discharge located at the downstream end of the Illinois River.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Environmental Modelling & Software - Volume 94, August 2017, Pages 100-111
Journal: Environmental Modelling & Software - Volume 94, August 2017, Pages 100-111
نویسندگان
Mostafa M. Elag, Praveen Kumar, Luigi Marini, James D. Myers, Margaret Hedstrom, Beth A. Plale,