کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4978362 | 1452265 | 2016 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A taxonomy-based approach to shed light on the babel of mathematical models for rice simulation
ترجمه فارسی عنوان
یک رویکرد بر مبنای طبقه بندی برای روشن کردن زاویه ای از مدل های ریاضی برای شبیه سازی برنج
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
طبقه بندی مدل، پارامتر مدل، گروه مدل، ساختار مدل، برنج، عدم قطعیت،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزار
چکیده انگلیسی
For most biophysical domains, differences in model structures are seldom quantified. Here, we used a taxonomy-based approach to characterise thirteen rice models. Classification keys and binary attributes for each key were identified, and models were categorised into five clusters using a binary similarity measure and the unweighted pair-group method with arithmetic mean. Principal component analysis was performed on model outputs at four sites. Results indicated that (i) differences in structure often resulted in similar predictions and (ii) similar structures can lead to large differences in model outputs. User subjectivity during calibration may have hidden expected relationships between model structure and behaviour. This explanation, if confirmed, highlights the need for shared protocols to reduce the degrees of freedom during calibration, and to limit, in turn, the risk that user subjectivity influences model performance.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Environmental Modelling & Software - Volume 85, November 2016, Pages 332-341
Journal: Environmental Modelling & Software - Volume 85, November 2016, Pages 332-341
نویسندگان
Roberto Confalonieri, Simone Bregaglio, Myriam Adam, Françoise Ruget, Tao Li, Toshihiro Hasegawa, Xinyou Yin, Yan Zhu, Kenneth Boote, Samuel Buis, Tamon Fumoto, Donald Gaydon, Tanguy Lafarge, Manuel Marcaida, Hiroshi Nakagawa, Alex C. Ruane,