کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4987133 | 1455149 | 2017 | 44 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Using clustering based logical equation set to decompose large scale chemical processes for parallel solving data reconciliation and parameter estimation problem
ترجمه فارسی عنوان
با استفاده از معادله منطقی مبتنی بر خوشه بندی برای تجزیه فرایندهای شیمیایی در مقیاس بزرگ برای حل مسائل موازی حل مسئله و ارزیابی مسئله
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
خوشه بندی ارزیابی داده ها و ارزیابی پارامترها، معادله منطقی مجموعه، حل موازی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
تصفیه و جداسازی
چکیده انگلیسی
Data reconciliation and parameter estimation (DRPE) are important to the performance improvement of real time optimization and process control. As the computational difficulty of nonlinear DRPE optimization problems increases significantly with the number of variables and the equations in large scale processes, solving several smaller DRPE problems iteratively can be more efficient than solving a single large one. A novel parallel processing strategy is proposed to address the optimal distributed DRPE sub-problems. The clustering based logical equation set decomposition (CLESD) is developed to decrease the size of DRPE sub-problems and minimize the information loss of the large-scale DRPE problem. The decomposition of a large DRPE problem requires a two-stage approach, including the equation clustering decomposition and the variable clustering decomposition. CLESD-DRPE is compared with the traditional DRPE method via two industrial applications. The results show that CLESD-DRPE outperforms the traditional DRPE in terms of the solution time and convergence efficiency.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemical Engineering Research and Design - Volume 120, April 2017, Pages 396-409
Journal: Chemical Engineering Research and Design - Volume 120, April 2017, Pages 396-409
نویسندگان
Zhengjiang Zhang, Ying-Yu Chuang, Junghui Chen,