کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
499075 863026 2009 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Dynamic p-adaptive Runge–Kutta discontinuous Galerkin methods for the shallow water equations
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Dynamic p-adaptive Runge–Kutta discontinuous Galerkin methods for the shallow water equations
چکیده انگلیسی

In this paper, dynamic p-adaptive Runge–Kutta discontinuous Galerkin (RKDG) methods for the two-dimensional shallow water equations (SWE) are investigated. The p-adaptive algorithm that is implemented dynamically adjusts the order of the elements of an unstructured triangular grid based on a simple measure of the local flow properties of the numerical solution. Time discretization is accomplished using optimal strong-stability-preserving (SSP) RK methods. The methods are tested on two idealized problems of coastal ocean modeling interest with complex bathymetry – namely, the idealization of a continental shelf break and a coastal inlet. Numerical results indicate the stability, robustness, and accuracy of the algorithm, and it is shown that the use of dynamic p-adaptive grids offers savings in CPU time relative to grids with elements of a fixed order p that use either local h-refinement or global p-refinement to adequately resolve the solution while offering comparable accuracy.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 198, Issues 21–26, 1 May 2009, Pages 1766–1774
نویسندگان
, , , ,