کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4992599 | 1457388 | 2017 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Effect of flow distortion on fuel/air mixing and combustion in an upstream-fueled cavity flameholder for a supersonic combustor
ترجمه فارسی عنوان
اثر اعوجاج جریان بر مخلوط کردن و احتراق سوخت و هوا در شعله گر حفره ای بالادست برای یک آتش سوزی فوق العاده
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
آتش سوزی فوق العاده تعویض موج شوک با جریان، مخلوط کردن هوا سوخت تثبیت کننده شعله،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
جریان سیال و فرایندهای انتقال
چکیده انگلیسی
This paper describes an experimental study of the effects of an incident shockwave on the flow field, fuel distribution and combustion within a cavity flameholder with upstream fuel injection. Two impingement locations are employed: (1) near the fuel injector (the so-called shock-on-jet case) and (2) on the cavity shear layer (the shock-on-cavity case). Shadowgraph is used to characterize the flow field. Air seeded with nitric oxide (NO) is used as the simulated fuel and the resulting planar laser-induced fluorescence (NO-PLIF) from NO molecules is used to characterize fuel/air mixing while planar laser-induced fluorescence of OH molecules to characterize the actual combustion process. The shadowgraph and NO-PLIF images are compared with a CFD (Computational Fluid Dynamics) solution of the Reynolds-averaged-Navier Stokes (RANS) for assessment and explanation of experimental results of non-reacting tests. The effect of the shock on the cavity shear layer is to control the fuel distribution within the cavity. The effect of the shock on the jet is to force the shear layer deep within the cavity, which results in higher fuel concentrations near the cavity centerline. The shock-on-cavity case causes the shear layer to separate upstream of the cavity. Mixing uniformity is enhanced by the increased breakup of the fuel plume. Combustion is stronger and more uniform with the shock impinging on the cavity, while it is limited to the edges of the cavity with shock impingement on the jet. The greater mixing afforded in the shock-on-cavity case reduces the fuel concentration near the centerline and allows stronger burning in the center of the cavity. Doubling the fuel injection momentum flux ratio does not strongly affect the pattern of fuel distribution in either case, but combustion in the shock-on-cavity case is reduced, because the fuel concentration at the centerline is high.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Experimental Thermal and Fluid Science - Volume 88, November 2017, Pages 461-471
Journal: Experimental Thermal and Fluid Science - Volume 88, November 2017, Pages 461-471
نویسندگان
Steven Etheridge, Jong Guen Lee, Campbell Carter, Mark Hagenmaier, Ryan Milligan,