کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
499867 | 863063 | 2006 | 18 صفحه PDF | دانلود رایگان |

Aerodynamic shape design and optimization problems based on evolutionary algorithms and surrogate evaluation tools, i.e., the so-called metamodels, have recently found widespread use. Using metamodels, trained either separately from or during the optimization loop, a considerable reduction in the overall computing cost can be achieved. To support metamodel-based evolutionary algorithms, a class of new metamodels which utilize both known responses and response gradients for their training is proposed. The new gradient-assisted metamodels are extensions of standard multi-layer perceptrons and radial basis function networks. To demonstrate the prediction capabilities of the proposed metamodels and investigate different implementation modes within search algorithms along with the relevant CPU cost, a number of 2D and 3D aerodynamic shape (namely airfoils and turbomachinery blades) design problems are analyzed. Single- and two-objective problems, aiming at designing shapes that reproduce known pressure distributions at specific operating points, are considered. The exact evaluation tool is a numerical solver of the compressible fluid flow equations. The necessary gradient of the objective function is obtained by formulating and numerically solving adjoint equations.
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 195, Issues 44–47, 15 September 2006, Pages 6312–6329