کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5000261 | 1460681 | 2017 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A sparse dissimilarity analysis algorithm for incipient fault isolation with no priori fault information
ترجمه فارسی عنوان
الگوریتم تجزیه و تحلیل تجزیه نادر برای جداسازی گسل اولیه با هیچ اطلاعات خطای پیشین
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
ناهماهنگی عجیب، ساختار توزیع، تجزیه ناهموار، تشخیص گسل، کمند،
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی هوافضا
چکیده انگلیسی
The conventional multivariate statistical process control (MSPC) methods in general quantify the distance between the new sample and the modelling samples for fault detection and diagnosis, which, however, do not check the changes of data distribution as long as monitoring statistics stay inside normal region enclosed by control limit and thus are not sensitive to incipient changes. In the present work, a sparse dissimilarity (SDISSIM) algorithm is developed which can isolate the incipient abnormal variables that change the data distribution structure and does not need any priori fault knowledge. First, the distribution dissimilarity is decomposed deeply and significant dissimilarity is extracted to integrate the critical difference of variable covariance structure between the reference normal operation distribution and the actual distribution. Second, a sparse regression-based optimization problem is formulated to isolate abnormal variables associated with changes of distribution structure. Sparse coefficients are obtained with only a small fraction of variables' coefficients nonzeros, pointing to abnormal variables. As illustrations, SDISSIM is applied to both simulated and real industrial process data with encouraging results to figure out the slight distortions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Control Engineering Practice - Volume 65, August 2017, Pages 70-82
Journal: Control Engineering Practice - Volume 65, August 2017, Pages 70-82
نویسندگان
Chunhui Zhao, Furong Gao,