کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5002222 1368450 2016 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Lower Bounds on the Best-Case Complexity of Solving a Class of Non-cooperative Games*
ترجمه فارسی عنوان
محدودیت های پایین در پیچیدگی بهترین حالت حل یک بازی از بازی های غیر تعاونی *
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
چکیده انگلیسی
This paper studies the complexity of solving the class G of all N-player non-cooperative games with continuous action spaces that admit at least one Nash equilibrium (NE). We consider a distributed Nash seeking setting where agents communicate with a set of system nodes (SNs), over noisy communication channels, to obtain the required information for updating their actions. The complexity of solving games in the class G is defined as the minimum number of iterations required to find a NE of any game in G with ε accuracy. Using information-theoretic inequalities, we derive a lower bound on the complexity of solving the game class G that depends on the Kolmogorov 2ε-capacity of the constraint set and the total capacity of the communication channels. We also derive a lower bound on the complexity of solving games in G which depends on the volume and surface area of the constraint set.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC-PapersOnLine - Volume 49, Issue 22, 2016, Pages 244-249
نویسندگان
, , , ,