کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5002437 | 1368453 | 2016 | 4 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Detection of Honey Adulteration using Hyperspectral Imaging
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مکانیک محاسباتی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This study investigates the application of hyperspectral imaging system and data mining based classifiers for honey adulteration detection. Hyperspectral images from pure and adulterated samples were captured in using a VIS-NIR hyperspectral camera (400 - 1000 nm). After preprocessing the images, five different data mining based techniques, including artificial neural network (ANN), support vector machine (SVM), Linear discriminant analysis (LDA), Fisher and Parzen classifiers were applied for supervised image classification. Classifier test results show the highest classification accuracy of 95% for ANN classifier. Other classifiers including SVM with radial basis kernel function (92%), LDA (90%), Fisher (89 %), and Parzen with 84% correct classification rate also showed acceptable results. This research shows the capability of hyperspectral imaging for honey authentication.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC-PapersOnLine - Volume 49, Issue 16, 2016, Pages 311-314
Journal: IFAC-PapersOnLine - Volume 49, Issue 16, 2016, Pages 311-314
نویسندگان
Sahameh Shafiee, Gerrit Polder, Saeid Minaei, Nasrolah Moghadam-Charkari, Saskia van Ruth, Piotr M. KuÅ,