کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5002543 | 1368454 | 2016 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Improving the Inverse Dynamics Model of the KUKA LWR IV+ using Independent Joint Learning*
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مکانیک محاسباتی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we discuss the improvement of the inverse dynamics models of the KUKA LWR IV+ by a recently proposed approach called Independent Joint Learning (IJL). In IJL, the error between the torques from the real robot and the torques from inaccurate dynamics model is estimated using only joint-local information. Due to the reduced model complexity IJL can be used for task-to-task transfer learning and to a task different from the trained tasks. In this paper, we implemented IJL to improve the accuracy of the already existing KUKA LWR IV+ inverse dynamics model and our results show a significant improvement. We also discuss IJL for different types of input datasets and compared them in terms of performance.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC-PapersOnLine - Volume 49, Issue 21, 2016, Pages 507-512
Journal: IFAC-PapersOnLine - Volume 49, Issue 21, 2016, Pages 507-512
نویسندگان
Zeeshan Shareef, Pouya Mohammadi, Jochen Steil,