کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5002923 | 1368459 | 2016 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Integrating classifiers across datasets improves consistency of biomarker predictions for sepsis
ترجمه فارسی عنوان
طبقه بندی های یکپارچه در سراسر مجموعه داده ها، یکپارچگی پیش بینی های بیومارکر برای سپسیس را بهبود می بخشد
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
فراگیری ماشین، ثبات، بیومارکر، انتخاب ویژگی، سپسیس، عفونت،
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مکانیک محاسباتی
چکیده انگلیسی
Systemic infection can cause multiple organ failure leading to severe sepsis and often death. Hence, early diagnosis is mandatory. Several transcriptomics studies were performed resulting in biomarker lists for diagnosis. This lists, however are very inconsistent. We developed Mixed Integer Linear Programming based classifiers (Support Vector Machines), trained them separately with different datasets, and combined them by constraining them to use the same sets of features. Strikingly, this improved the consistency of the predicted biomarkers across datasets by 42%. Our approach is generic; it enabled to integrate diverse datasets and, with this, improved the consistency of predictions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC-PapersOnLine - Volume 49, Issue 26, 2016, Pages 95-102
Journal: IFAC-PapersOnLine - Volume 49, Issue 26, 2016, Pages 95-102
نویسندگان
João Pedro Saraiva, Marcus Oswald, Antje Biering, Cora Assmann, Tilman Klassert, Markus Blaess, Kristin Czakai, Ralf Claus, Jürgen Löffler, Hortense Slevogt, Rainer König,