کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5005154 | 1369010 | 2010 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Application of the PSO-SVM model for recognition of control chart patterns
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Control chart patterns are important statistical process control tools for determining whether a process is run in its intended mode or in the presence of unnatural patterns. Accurate recognition of control chart patterns is essential for efficient system monitoring to maintain high-quality products. This paper introduces a novel hybrid intelligent system that includes three main modules: a feature extraction module, a classifier module, and an optimization module. In the feature extraction module, a proper set combining the shape features and statistical features is proposed as the efficient characteristic of the patterns. In the classifier module, a multi-class support vector machine (SVM)-based classifier is proposed. For the optimization module, a particle swarm optimization algorithm is proposed to improve the generalization performance of the recognizer. In this module, it the SVM classifier design is optimized by searching for the best value of the parameters that tune its discriminant function (kernel parameter selection) and upstream by looking for the best subset of features that feed the classifier. Simulation results show that the proposed algorithm has very high recognition accuracy. This high efficiency is achieved with only little features, which have been selected using particle swarm optimizer.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: ISA Transactions - Volume 49, Issue 4, October 2010, Pages 577-586
Journal: ISA Transactions - Volume 49, Issue 4, October 2010, Pages 577-586
نویسندگان
Vahid Ranaee, Ata Ebrahimzadeh, Reza Ghaderi,