کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5007212 | 1461603 | 2017 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Variational mode decomposition based approach for accurate classification of color fundus images with hemorrhages
ترجمه فارسی عنوان
روش مبتنی بر تجزیه حالت متغیر برای طبقه بندی دقیق تصاویر فوندوس رنگ با خونریزی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
رتینوپاتی دیابتی، خونریزی شبکیه تجزیه حالت متغیر، توصیفگرهای بافت، طبقه بندی،
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی برق و الکترونیک
چکیده انگلیسی
Diabetic retinopathy is a disease that can cause a loss of vision. An early and accurate diagnosis helps to improve treatment of the disease and prognosis. One of the earliest characteristics of diabetic retinopathy is the appearance of retinal hemorrhages. The purpose of this study is to design a fully automated system for the detection of hemorrhages in a retinal image. In the first stage of our proposed system, a retinal image is processed with variational mode decomposition (VMD) to obtain the first variational mode, which captures the high frequency components of the original image. In the second stage, four texture descriptors are extracted from the first variational mode. Finally, a classifier trained with all computed texture descriptors is used to distinguish between images of healthy and unhealthy retinas with hemorrhages. Experimental results showed evidence of the effectiveness of the proposed system for detection of hemorrhages in the retina, since a perfect detection rate was achieved. Our proposed system for detecting diabetic retinopathy is simple and easy to implement. It requires only short processing time, and it yields higher accuracy in comparison with previously proposed methods for detecting diabetic retinopathy.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Optics & Laser Technology - Volume 96, 1 November 2017, Pages 243-248
Journal: Optics & Laser Technology - Volume 96, 1 November 2017, Pages 243-248
نویسندگان
Salim Lahmiri, Amir Shmuel,