کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5011389 1462591 2018 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Computing stationary solutions of the two-dimensional Gross-Pitaevskii equation with deflated continuation
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
Computing stationary solutions of the two-dimensional Gross-Pitaevskii equation with deflated continuation
چکیده انگلیسی


- The two-dimensional nonlinear Schrodinger equation with a parabolic potential is considered.
- Deflated continuation method is discussed and adapted to identifying the stationary solutions of this problem.
- Once the branches of solutions are identified, their linear stability is also obtained.
- Numerous previously unknown branches are obtained in the process.

In this work we employ a recently proposed bifurcation analysis technique, the deflated continuation algorithm, to compute steady-state solitary waveforms in a one-component, two-dimensional nonlinear Schrödinger equation with a parabolic trap and repulsive interactions. Despite the fact that this system has been studied extensively, we discover a wide variety of previously unknown branches of solutions. We analyze the stability of the newly discovered branches and discuss the bifurcations that relate them to known solutions both in the near linear (Cartesian, as well as polar) and in the highly nonlinear regimes. While deflated continuation is not guaranteed to compute the full bifurcation diagram, this analysis is a potent demonstration that the algorithm can discover new nonlinear states and provide insights into the energy landscape of complex high-dimensional Hamiltonian dynamical systems.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Communications in Nonlinear Science and Numerical Simulation - Volume 54, January 2018, Pages 482-499
نویسندگان
, , ,