کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5011579 | 1462597 | 2017 | 38 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Bifurcations of periodic motion in a three-degree-of-freedom vibro-impact system with clearance
ترجمه فارسی عنوان
دوگانگی حرکت دوره ای در یک سیستم ارتعاش سه درجه ای آزادی با ترخیص
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
سیستم ضربه محرک معیارهای انتقادی صریح، همبستگی یک بعدی و همبستگی-دو دوگانگی صاف، دوچرخه سواری گاو،
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی مکانیک
چکیده انگلیسی
The smooth bifurcation and grazing non-smooth bifurcation of periodic motion of a three-degree-of-freedom vibro-impact system with clearance are studied in this paper. Firstly, a periodic solution of vibro-impact system is solved and a six-dimensional Poincaré map is established. Then, for the six-dimensional Poincaré map, the analytic expressions of all eigenvalues of Jacobi matrix with respect to parameters are unavailable. This implies that with application of the classical critical criterion described by the properties of eigenvalues, we have to numerically compute eigenvalues point by point and check their properties to search for the bifurcation points. Such the numerical calculation is a laborious job in the process of determining bifurcation points. To overcome the difficulty that originates from the classical bifurcation criteria, the explicit critical criteria without using eigenvalues calculation of high-dimensional map are applied to determine bifurcation points of Co-dimension-one period doubling bifurcation and Co-dimension-one Neimark-Sacker bifurcation and Co-dimension-two Flip-Neimark-Sacker bifurcation, and then local dynamical behaviors of these bifurcations are analyzed. Moreover, the directions of period doubling bifurcation and Neimark-Sacker bifurcation are analyzed by center manifold reduction theory and normal form approach. Finally, the existence of the grazing periodic motion of the vibro-impact system is analyzed and the grazing bifurcation point is obtained, the discontinuous grazing bifurcation behavior is studied based on the compound normal form map near the grazing point, the discontinuous jumping phenomenon and co-existing multiple solutions near the grazing bifurcation point are revealed.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Communications in Nonlinear Science and Numerical Simulation - Volume 48, July 2017, Pages 1-17
Journal: Communications in Nonlinear Science and Numerical Simulation - Volume 48, July 2017, Pages 1-17
نویسندگان
Liu Yongbao, Wang Qiang, Xu Huidong,