کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5012767 | 1462819 | 2017 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Thermodynamic performance comparison between ORC and Kalina cycles for multi-stream waste heat recovery
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Organic Rankine cycle (ORC) and Kalina cycle are the main technologies to recover waste heat for power generation. Up to now, many works dealing with the thermodynamic performance comparison between ORC and Kalina cycles are available, but these studies considered for heat recovery from a single heat source or stream. In the process industry, there are multiple waste heat streams, forming a complex heat source profile. In this paper, based on the simulation model developed in the Aspen Hysys software, the two cycles are calculated and compared. According to the waste heat composite curve, the multi-stream waste heat is divided into three kinds, straight, convex, and concave waste heat. Two parameters, the ratio of the heat above and below the most salient/concave point (R) and the temperature of the most point, are used to roughly express the feature of waste heat. With the efficiency from waste heat (exergy) to power as energy performance indicator, the calculation results for waste heat with maximum supply temperature 180 °C show that for straight and concave waste heat with R not less than 0.2, Kalina cycle is better than ORC, while for convex waste heat, ORC is preferable. The work can provide a reference to choose a suitable technology to recover low temperature waste heat for power generation in the process industry.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy Conversion and Management - Volume 143, 1 July 2017, Pages 482-492
Journal: Energy Conversion and Management - Volume 143, 1 July 2017, Pages 482-492
نویسندگان
Yufei Wang, Qikui Tang, Mengying Wang, Xiao Feng,