کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5012995 1462829 2017 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Comparative study of two weir type cascade solar stills with and without PCM storage using energy and exergy analysis
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی (عمومی)
پیش نمایش صفحه اول مقاله
Comparative study of two weir type cascade solar stills with and without PCM storage using energy and exergy analysis
چکیده انگلیسی
In this paper, the comparative study of energy and exergy performance of two weir type cascade solar stills with and without PCM storage in sunny and semi-cloudy days is carried out. The governing equations of energy analysis include a set of nonlinear equations which is obtained by writing energy balance for the various components of a solar still (i.e. glass cover, brackish water, absorber plate, phase change materials). A detailed exergy analysis is carried out and various irreversibility rates in the solar still system and its exergy efficiency are introduced. In order to solve the governing equations a computer simulation program is developed. The results of a numerical simulation of the present study are in good agreement with the experimental data of previous literatures. The numerical results of the present study show that the energy and exergy performance of solar still without PCM storage is better than the solar still with PCM storage in sunny days. On the other hand, the solar still with PCM storage is preferred for semi-cloudy days due to its better energy and exergy performance. The maximum value of the energy and exergy efficiencies of the solar still without PCM for a typical sunny day are 76.69% and 6.53%, respectively. While, the maximum energy and exergy efficiencies of the solar still with PCM for a sample semi-cloudy day are 74.35% and 8.59%, respectively. Furthermore, it is observed that the highest irreversibility rate belongs to the absorber plate and its value for the solar still without PCM on typical sunny day and the solar still with PCM on semi-cloudy days is 83.1% and 78.8% of the whole of system irreversibility rates, respectively. Whereas, the irreversibility rate of glass cover and brackish water can be neglected.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy Conversion and Management - Volume 133, 1 February 2017, Pages 97-109
نویسندگان
, , , ,