کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5014981 | 1463719 | 2017 | 27 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Effects of ε-martensitic transformation on crack tip deformation, plastic damage accumulation, and slip plane cracking associated with low-cycle fatigue crack growth
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی مکانیک
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Fatigue crack propagation behavior and associated plastic strain evolution in the vicinity of crack planes were investigated at different crack lengths for Fe-30Mn-6Al, Fe-30Mn-4Si-2Al, and Fe-30Mn-6Si alloys. In particular, fractographic analyses and electron backscatter diffraction measurements underneath the fracture surfaces were carried out. It was found that austenite of the Fe-30Mn-6Al alloy was completely stable at ambient temperature, and the Fe-30Mn-6Si and Fe-30Mn-4Si-2Al alloys showed deformation-induced ε-martensitic transformation. Both the Fe-30Mn-4Si-2Al and Fe-30Mn-6Si alloys showed γ/ε interface cracking. However, ductile cracking was observed in the former, while the latter showed brittle-like cracking. Additionally, both the Fe-30Mn-4Si-2Al and Fe-30Mn-6Al alloys showed ductile fatigue striation when the cracks became long, but the critical crack length to induce the striations in the Fe-30Mn-4Si-2Al alloy was longer than that in the Fe-30Mn-6Al. In contrast, the Fe-30Mn-6Si alloy did not show striation, not even just before failure. These observations are all related to ε-martensite transformation. In terms of the crack tip deformation, the key roles of ε-martensitic transformation are (1) brittle-like cracking along the γ/ε interface, (2) inhibition of fatigue damage accumulation, and (3) geometrical constraint of ε-martensite crystallographic structure at a fatigue crack tip. When ε-martensite is ductile, such as in the case of the Fe-30Mn-4Si-2Al alloy, the brittle-like cracking does not occur. Because of the roles (2) and (3) mentioned above, the Fe-30Mn-4Si-2Al alloy showed the lowest fatigue crack growth compared to the other tested alloys. This paper presents the proposed ε-martensite-related crack growth mechanism in detail.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Fatigue - Volume 103, October 2017, Pages 533-545
Journal: International Journal of Fatigue - Volume 103, October 2017, Pages 533-545
نویسندگان
Yun-Byum Ju, Motomichi Koyama, Takahiro Sawaguchi, Kaneaki Tsuzaki, Hiroshi Noguchi,