کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5025564 | 1470588 | 2017 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Dual multi-kernel discriminant analysis for color face recognition
ترجمه فارسی عنوان
تجزیه و تحلیل دوگانه چند هسته ای برای تشخیص چهره رنگی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی (عمومی)
چکیده انگلیسی
With the increasing use of color images in the fields of pattern recognition, computer vision and machine learning, color face recognition technique becomes important, whose key problem is how to make full use of the color information and extract effective discriminating features. In this paper, we propose a novel nonlinear feature extraction approach for color face recognition, named dual multi-kernel discriminant analysis (DMDA), where we design a kernel selection strategy to select the optimal kernel mapping function for each color component of face images, further design a color space selection strategy to choose the most suitable space, then separately map different color components of face images into different high-dimensional kernel spaces, and finally perform multi-kernel learning and discriminant analysis not only within each component but also between different components. Experimental results in the public face recognition grand challenge (FRGC) version 2 and labeled faces in the wilds (LFW) databases illustrate that our approach outperforms several representative color face recognition methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Optik - International Journal for Light and Electron Optics - Volume 139, June 2017, Pages 185-201
Journal: Optik - International Journal for Light and Electron Optics - Volume 139, June 2017, Pages 185-201
نویسندگان
Qian Liu, Chao Wang, Xiao-yuan Jing,