کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5045180 | 1475560 | 2017 | 10 صفحه PDF | دانلود رایگان |
- P1m and N1m can be neurophysiological probes for statistical learning.
- The correction of knowledge requires more time than the acquisition of new knowledge.
- Statistical learning contributes to recognition of word boundaries and word ordering.
- Listeners learn larger structures first and subsequently extract smaller structures.
Previous neural studies have supported the hypothesis that statistical learning mechanisms are used broadly across different domains such as language and music. However, these studies have only investigated a single aspect of statistical learning at a time, such as recognizing word boundaries or learning word order patterns. In this study, we neutrally investigated how the two levels of statistical learning for recognizing word boundaries and word ordering could be reflected in neuromagnetic responses and how acquired statistical knowledge is reorganised when the syntactic rules are revised. Neuromagnetic responses to the Japanese-vowel sequence (a, e, i, o, and u), presented every .45Â s, were recorded from 14 right-handed Japanese participants. The vowel order was constrained by a Markov stochastic model such that five nonsense words (aue, eao, iea, oiu, and uoi) were chained with an either-or rule: the probability of the forthcoming word was statistically defined (80% for one word; 20% for the other word) by the most recent two words. All of the word transition probabilities (80% and 20%) were switched in the middle of the sequence. In the first and second quarters of the sequence, the neuromagnetic responses to the words that appeared with higher transitional probability were significantly reduced compared with those that appeared with a lower transitional probability. After switching the word transition probabilities, the response reduction was replicated in the last quarter of the sequence. The responses to the final vowels in the words were significantly reduced compared with those to the initial vowels in the last quarter of the sequence. The results suggest that both within-word and between-word statistical learning are reflected in neural responses. The present study supports the hypothesis that listeners learn larger structures such as phrases first, and they subsequently extract smaller structures, such as words, from the learned phrases. The present study provides the first neurophysiological evidence that the correction of statistical knowledge requires more time than the acquisition of new statistical knowledge.
Journal: Neuropsychologia - Volume 95, 27 January 2017, Pages 1-10