کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
504978 864458 2014 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Statistical model based 3D shape prediction of postoperative trunks for non-invasive scoliosis surgery planning
ترجمه فارسی عنوان
بر اساس مدل آماری، پیش بینی شکل سه بعدی شانه های پس از عمل برای برنامه ریزی جراحی اسکولیوز غیر تهاجمی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی

One of the major concerns of scoliosis patients undergoing surgical treatment is the aesthetic aspect of the surgery outcome. It would be useful to predict the postoperative appearance of the patient trunk in the course of a surgery planning process in order to take into account the expectations of the patient. In this paper, we propose to use least squares support vector regression for the prediction of the postoperative trunk 3D shape after spine surgery for adolescent idiopathic scoliosis. Five dimensionality reduction techniques used in conjunction with the support vector machine are compared. The methods are evaluated in terms of their accuracy, based on the leave-one-out cross-validation performed on a database of 141 cases. The results indicate that the 3D shape predictions using a dimensionality reduction obtained by simultaneous decomposition of the predictors and response variables have the best accuracy.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers in Biology and Medicine - Volume 48, 1 May 2014, Pages 85–93
نویسندگان
, , ,