کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5053152 | 1476505 | 2017 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On estimating long-run effects in models with lagged dependent variables
ترجمه فارسی عنوان
برآورد اثرات بلندمدت در مدلهای با متغیرهای وابسته به عقب مانده
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
علوم انسانی و اجتماعی
اقتصاد، اقتصادسنجی و امور مالی
اقتصاد و اقتصادسنجی
چکیده انگلیسی
Biases can be substantial, sample ranges very wide, and hypothesis tests can be rendered useless in realistic data environments. There are three reasons for this poor performance. First, OLS estimates of the coefficient of a lagged dependent variable are downwardly biased in finite samples. Second, small biases in the estimate of the lagged, dependent variable coefficient are magnified in the calculation of long-run effects. And third, and perhaps most importantly, the statistical distribution associated with estimates of the LRP is complicated, heavy-tailed, and difficult to use for hypothesis testing. While many of the underlying problems have been long-known in the literature, the continued widespread use of the associated empirical procedures suggests that researchers are unaware of the extent and severity of the estimation problems. This study aims to illustrate their practical importance for applied research.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Economic Modelling - Volume 64, August 2017, Pages 302-311
Journal: Economic Modelling - Volume 64, August 2017, Pages 302-311
نویسندگان
W. Robert Reed, Min Zhu,