کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5053611 | 1476516 | 2016 | 11 صفحه PDF | دانلود رایگان |

- The properties of the MRS-GARCH with tempered stable distribution are presented.
- It consistently outperforms those with Student's t and GED with simulation evidence.
- Our empirical result demonstrates the usefulness of this model in practice.
- MRS-GARCH-S can be used to model the financial volatility in general contexts.
The Markov Regime-Switching Generalized autoregressive conditional heteroskedastic (MRS-GARCH) model is a widely used approach to model the financial volatility with potential structural breaks. The original innovation of the MRS-GARCH model is assumed to follow the Normal distribution, which cannot accommodate fat-tailed properties commonly existing in financial time series. Many existing studies point out that this problem can lead to inconsistent estimates. To overcome it, the Student's t-distribution and General Error Distribution (GED) are the two most popular alternatives. However, a recent study points out that the Student's t-distribution lacks stability. Also, it incorporates the α-stable distribution in the GARCH-type model. The issue of the α-stable distribution is that its second moment does not exist. To solve this problem, the tempered stable distribution, which retains most characteristics of the α-stable distribution and has defined moments, is a natural candidate. In this paper, we conduct a series of simulation studies to demonstrate that MRS-GARCH model with tempered stable distribution consistently outperform that with Student's t-distribution and GED. Our empirical study on the S&P 500 daily return volatility also generates robust results. Therefore, we argue that the tempered stable distribution could be a widely useful tool for modeling the financial volatility in general contexts with a MRS-GARCH-type specification.
Journal: Economic Modelling - Volume 53, February 2016, Pages 278-288