کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5058380 1476625 2016 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Identifying stationary series in panels: A Monte Carlo evaluation of sequential panel selection methods
ترجمه فارسی عنوان
شناسایی مجموعه های ثابت در پانل: ارزیابی مونت کارلو از روش های انتخاب پانل متوالی
موضوعات مرتبط
علوم انسانی و اجتماعی اقتصاد، اقتصادسنجی و امور مالی اقتصاد و اقتصادسنجی
چکیده انگلیسی


- We investigate the merits of sequential panel selection methods in classifying individual time series into nonstationary and stationary ones.
- A Monte Carlo analysis based on simulating individual unit root asymptotic test statistics and p values is carried out.
- We illustrate the simulation results using Receiver Operating Characteristic (ROC) graphs.
- Sequential panel selection methods may outperform unit root time series tests only under rather special conditions.

Sequential panel selection methods (spsms - procedures that sequentially use conventional panel unit root tests to identify I(0) time series in panels) are increasingly used in the empirical literature. We check the reliability of spsms by using Monte Carlo simulations based on generating directly the individual asymptotic p values to be combined into the panel unit root tests, in this way isolating the classification abilities of the procedures from the small sample properties of the underlying univariate unit root tests. The simulations consider both independent and cross-dependent individual test statistics. Results suggest that spsms may offer advantages over time series tests only under special conditions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Economics Letters - Volume 138, January 2016, Pages 9-14
نویسندگان
, ,