کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
506456 | 864910 | 2012 | 13 صفحه PDF | دانلود رایگان |

Spatial Decision Support Systems (SDSSs) often include models that can be used to assess the impact of possible decisions. These models usually simulate complex spatio-temporal phenomena, with input variables and parameters that are often hard to measure. The resulting model uncertainty is, however, rarely communicated to the user, so that current SDSSs yield clear, but therefore sometimes deceptively precise outputs. Inclusion of uncertainty in SDSSs requires modeling methods to calculate uncertainty and tools to visualize indicators of uncertainty that can be understood by its users, having mostly limited knowledge of spatial statistics. This research makes an important step towards a solution of this issue. It illustrates the construction of the PCRaster Land Use Change model (PLUC) that integrates simulation, uncertainty analysis and visualization. It uses the PCRaster Python framework, which comprises both a spatio-temporal modeling framework and a Monte Carlo analysis framework that together produce stochastic maps, which can be visualized with the Aguila software, included in the PCRaster Python distribution package. This is illustrated by a case study for Mozambique in which it is evaluated where bioenergy crops can be cultivated without endangering nature areas and food production now and in the near future, when population and food intake per capita will increase and thus arable land and pasture areas are likely to expand. It is shown how the uncertainty of the input variables and model parameters effects the model outcomes. Evaluation of spatio-temporal uncertainty patterns has provided new insights in the modeled land use system about, e.g., the shape of concentric rings around cities. In addition, the visualization modes give uncertainty information in an comprehensible way for users without specialist knowledge of statistics, for example by means of confidence intervals for potential bioenergy crop yields. The coupling of spatio-temporal uncertainty analysis to the simulation model is considered a major step forward in the exposure of uncertainty in SDSSs.
► PCRaster Land Use Change model PLUC integrates simulation and uncertainty analysis.
► Spatio-temporal uncertainty patterns provide new insights in land use system.
► Visualization modes give comprehensible uncertainty information.
► Coupling uncertainty analysis to simulation model exposes uncertainty in SDSSs.
Journal: Computers, Environment and Urban Systems - Volume 36, Issue 1, January 2012, Pages 30–42