کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5072597 | 1373510 | 2008 | 26 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Case-based learning with different similarity functions
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
علوم انسانی و اجتماعی
اقتصاد، اقتصادسنجی و امور مالی
اقتصاد و اقتصادسنجی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The paper applies the rule for adaptation of the aspiration level suggested by Gilboa and Schmeidler to a situation in which the similarity between acts is represented by an arbitrary similarity function [Gilboa, I., Schmeidler, D., 1996. Case-based optimization. Games Econ. Behav. 15, 1-26]. I show that the optimality result derived by Gilboa and Schmeidler in general fails. With a concave similarity function, only corner acts are chosen in the limit. The optimality result can be reestablished by introducing convex regions into the similarity function and modifying the aspiration adaptation rule. A similarity function which is “sufficiently convex” allows approximating optimal behavior with an arbitrary degree of precision.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Games and Economic Behavior - Volume 63, Issue 1, May 2008, Pages 107-132
Journal: Games and Economic Behavior - Volume 63, Issue 1, May 2008, Pages 107-132
نویسندگان
Ani Guerdjikova,