| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 5076520 | 1477213 | 2015 | 12 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Valuing equity-linked death benefits with a threshold expense strategy
												
											ترجمه فارسی عنوان
													ارزش گذاری مزایای مرگ مرتبط با عدالت با استراتژی هزینه های آستانه 
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													ریاضیات
													آمار و احتمال
												
											چکیده انگلیسی
												We investigate equity-linked investment products with a threshold expense strategy, under which an insurance company will collect expenses continuously from the policyholder's account only when the account value is lower than a pre-specified level. The logarithmic value of the policyholder's account, before deducting any fees, is described by a jump diffusion process which is independent of the time-to-death random variable. The distribution of the time-to-death random variable is approximated by a combination of exponential distributions, which are dense in the space of density functions on [0,â). We characterize the Laplace transform of the distribution of a general refracted jump diffusion process through some integro-differential equations. Besides, the distribution of a refracted double exponential jump diffusion process at an independent exponential random variable is derived, from which closed-form formulas to evaluate the total expenses and the fair fee rates are obtained. Finally, we illustrate our results by some numerical examples.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Insurance: Mathematics and Economics - Volume 62, May 2015, Pages 79-90
											Journal: Insurance: Mathematics and Economics - Volume 62, May 2015, Pages 79-90
نویسندگان
												Jiang Zhou, Lan Wu, 
											