کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5076777 | 1477221 | 2014 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Generalized quantiles as risk measures
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آمار و احتمال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In the statistical and actuarial literature several generalizations of quantiles have been considered, by means of the minimization of a suitable asymmetric loss function. All these generalized quantiles share the important property of elicitability, which has received a lot of attention recently since it corresponds to the existence of a natural backtesting methodology. In this paper we investigate the case of M-quantiles as the minimizers of an asymmetric convex loss function, in contrast to Orlicz quantiles that have been considered in Bellini and Rosazza Gianin (2012). We discuss their properties as risk measures and point out the connection with the zero utility premium principle and with shortfall risk measures introduced by Föllmer and Schied (2002). In particular, we show that the only M-quantiles that are coherent risk measures are the expectiles, introduced by Newey and Powell (1987) as the minimizers of an asymmetric quadratic loss function. We provide their dual and Kusuoka representations and discuss their relationship with CVaR. We analyze their asymptotic properties for αâ1 and show that for very heavy tailed distributions expectiles are more conservative than the usual quantiles. Finally, we show their robustness in the sense of lipschitzianity with respect to the Wasserstein metric.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Insurance: Mathematics and Economics - Volume 54, January 2014, Pages 41-48
Journal: Insurance: Mathematics and Economics - Volume 54, January 2014, Pages 41-48
نویسندگان
Fabio Bellini, Bernhard Klar, Alfred Müller, Emanuela Rosazza Gianin,