کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5076842 | 1477219 | 2014 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On the multidimensional extension of countermonotonicity and its applications
ترجمه فارسی عنوان
در گسترش چند بعدی ضد انحطاط و برنامه های کاربردی آن
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آمار و احتمال
چکیده انگلیسی
In a 2-dimensional space, Fréchet-Hoeffding upper and lower bounds define comonotonicity and countermonotonicity, respectively. Similarly, in the multidimensional case, comonotonicity can be defined using the Fréchet-Hoeffding upper bound. However, since the multidimensional Fréchet-Hoeffding lower bound is not a distribution function, there is no obvious extension of countermonotonicity in multidimensions. This paper investigates in depth a new multidimensional extension of countermonotonicity. We first provide an equivalent condition for countermonotonicity in 2-dimension, and extend the definition of countermonotonicity into multidimensions. In order to justify such extensions, we show that newly defined countermonotonic copulas constitute a minimal class of copulas. Two applications will be provided. First, we will study the relationships between multidimensional countermonotonicity and such well-known multivariate concordance measures as Kendall's tau or Spearman's rho. Second, we will give a financial interpretation of multidimensional countermonotonicity via the existing herd behavior index.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Insurance: Mathematics and Economics - Volume 56, May 2014, Pages 68-79
Journal: Insurance: Mathematics and Economics - Volume 56, May 2014, Pages 68-79
نویسندگان
Woojoo Lee, Jae Youn Ahn,