کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5076842 1477219 2014 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the multidimensional extension of countermonotonicity and its applications
ترجمه فارسی عنوان
در گسترش چند بعدی ضد انحطاط و برنامه های کاربردی آن
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آمار و احتمال
چکیده انگلیسی
In a 2-dimensional space, Fréchet-Hoeffding upper and lower bounds define comonotonicity and countermonotonicity, respectively. Similarly, in the multidimensional case, comonotonicity can be defined using the Fréchet-Hoeffding upper bound. However, since the multidimensional Fréchet-Hoeffding lower bound is not a distribution function, there is no obvious extension of countermonotonicity in multidimensions. This paper investigates in depth a new multidimensional extension of countermonotonicity. We first provide an equivalent condition for countermonotonicity in 2-dimension, and extend the definition of countermonotonicity into multidimensions. In order to justify such extensions, we show that newly defined countermonotonic copulas constitute a minimal class of copulas. Two applications will be provided. First, we will study the relationships between multidimensional countermonotonicity and such well-known multivariate concordance measures as Kendall's tau or Spearman's rho. Second, we will give a financial interpretation of multidimensional countermonotonicity via the existing herd behavior index.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Insurance: Mathematics and Economics - Volume 56, May 2014, Pages 68-79
نویسندگان
, ,