کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5077130 | 1374118 | 2011 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On absolute ruin minimization under a diffusion approximation model
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آمار و احتمال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we assume that the surplus process of an insurance entity is represented by a pure diffusion. The company can invest its surplus into a Black-Scholes risky asset and a risk free asset. We impose investment restrictions that only a limited amount is allowed in the risky asset and that no short-selling is allowed. We further assume that when the surplus level becomes negative, the company can borrow to continue financing. The ultimate objective is to seek an optimal investment strategy that minimizes the probability of absolute ruin, i.e. the probability that the liminf of the surplus process is negative infinity. The corresponding Hamilton-Jacobi-Bellman (HJB) equation is analyzed and a verification theorem is proved; applying the HJB method we obtain explicit expressions for the S-shaped minimal absolute ruin function and its associated optimal investment strategy. In the second part of the paper, we study the optimization problem with both investment and proportional reinsurance control. There the minimal absolute ruin function and the feedback optimal investment-reinsurance control are found explicitly as well.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Insurance: Mathematics and Economics - Volume 48, Issue 1, January 2011, Pages 123-133
Journal: Insurance: Mathematics and Economics - Volume 48, Issue 1, January 2011, Pages 123-133
نویسندگان
Shangzhen Luo, Michael Taksar,